Critical Insights into the Therapeutic Potential of Piccha Basti – A Review

Bhoomika Chaudhary1*, Sarvesh Kumar Singh2, Kshipra Rajoria3, Vimla Bishnoi1

1PG Scholar, Department of Panchakarma, National Institute of Ayurveda, Jaipur, Rajasthan, India.
2Associate Professor, Department of Panchakarma, National Institute of Ayurveda, Jaipur, Rajasthan, India.
3Assistant Professor, Department of Panchakarma, National Institute of Ayurveda, Jaipur, Rajasthan, India.

ABSTRACT

Introduction: Panchakarma (~five basic therapeutic procedures in Ayurvedic medicine) therapies, integral to Ayurvedic management, include Basti (~medicated enema), targeting Vata imbalances. Piccha Basti, a subtype, employs a standardized blend of honey, raw sugar, clarified butter, medicinal paste, and herbal decoction. It addresses gastrointestinal disorders such as diarrhea and inflammatory bowel disease.

Materials and Methods: The study reviewed classical Ayurvedic texts including Brihatrayee and Laghutrayee and conducted a comprehensive search across various databases and journals such as PubMed, JAIM, and ResearchGate for information on “Basti” and “Piccha Basti.” Individual constituent drugs of Piccha Basti were also investigated. Relevant articles were critically analyzed to draw conclusions.

Results: Basti (~medicated enema), administered rectally, targets the colon, primarily affected by Vata dosha in classical texts. It acts on Vata dosha, Pitta, and Kapha dosha, maintaining equilibrium. The Virya (potency) spreads systemically, exhibiting local and systemic effects. Picchabasti constituents, predominantly Madhur (sweet), Tikta (pungent), and Kashaya (astringent), possess properties such as Picchil (~viscous), Sangrahi (~absorbent), Raktareshodhaka (~hemostatic), Shonitasthapana (~blood-staunching), Vranaropana (~wound-healing), and Shothahara (~anti-inflammatory), expediting gut healing. Picchil (~viscous) property protects the gut mucosa, while Sangrahi (~absorbent) property regulates stool consistency. Raktareshodhaka (~hemostatic) and Shonitasthapana (~blood-staunching) properties control bleeding, and Vranaropaka Karma (~wound-healing) aids ulcer healing.

Conclusion: In Ayurvedic literature, Piccha Basti is lauded for its therapeutic efficacy in treating conditions such as Jirna Atisara (~chronic diarrhea), Pravahika (~dysentery), and Grahanaki Dosha (~irritable bowel syndrome). On reviewing numerous articles detailing the constituents of Piccha Basti, it has been concluded that these components possess specific chemical constituents that exert a targeted effect on inflammatory bowel disease.

1. INTRODUCTION

Panchakarma (five basic therapeutic procedures in Ayurvedic medicine) therapies hold a prominent place in Ayurvedic disease management, with a rich history of efficacy and safety documented over centuries of practice. Among these therapies, Basti (medicated enema), is a principal treatment of the Shodhana (~purification process), stands out as a critical therapeutic approach for addressing various ailments, particularly those related to Vata imbalances.[1] Classical texts delineate two primary types of Basti: Asthapana Basti and Anuvasana Basti,[2] distinguished by their respective compositions of decoction and oleaginous substances. The composition of Niruha Basti is meticulously chosen to address the accumulation of pathological Doshas within the body, aiming to eliminate them effectively.[3] Piccha Basti, categorized as a subtype of Asthapana Basti (therapeutic decoction enema) or Niruha Basti (therapeutic decoction enema) within the Ayurvedic tradition, comprises a specific formulation featuring a standardized blend of Madhu (honey), Sharkara (raw sugar), Ghrita (clarified butter derived from cow’s milk), Kalka (a finely prepared paste of plant-based medicinal substances), and

Corresponding Author:
Dr. Bhoomika Chaudhary,
PG Scholar, Department of Panchakarma, National Institute of Ayurveda, Deemed to be University (De novo), Jaipur, Rajasthan, India.
Email: bhoomijchaudhary1717@gmail.com

© 2024 Bhoomika Chaudhary, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). (https://creativecommons.org/licenses/by/4.0/).
Kwath (a herbal decoction).[4] The therapeutic focus of Piccha Basti is directed toward alleviating compromised gastrointestinal conditions, including Jirna Atisara (~chronic diarrhea), Pravahika (~dysentery), and Grahani Doshaha (~irritable bowel syndrome [IBS]).[5] A review of the therapeutic potential of Piccha Basti is warranted due to the increasing burden of IBD resulting from unhealthy lifestyles and dietary habits. Conventional treatments often carry adverse effects, prompting a search for safer and more effective alternatives. This review aims to elucidate the mechanisms underlying the therapeutic effects of Piccha Basti, particularly its anti-inflammatory properties, immunomodulatory effects, intestinal protective mechanisms, and role in maintaining gut microbiotic homeostasis.

2. MATERIALS AND METHODS

For this study, an extensive review of classical Ayurvedic texts including Charaka Samhita, Sushruta Samhita, Ashtanga Hridaya, Ashtanga Sangraha, Sharangdhar Samhita, Chakradatta, Yogratnakar, and Bhavaprakasha was conducted. A comprehensive search using keywords “Basti” and “Piccha Basti” was performed across various databases and journals such as PubMed, Journal of Ayurveda and Integrative Medicine, ResearchGate, and Google Scholar that were published until the date April 2024. In addition, each constituent drug of Piccha Basti was searched individually in both indexed and non-indexed journals. On identification of relevant articles, a final database was meticulously reviewed, and conclusions were drawn based on critical analysis of the findings.

3. RESULTS

Therefore, based on the comprehensive review conducted, it is evident that Piccha Basti emerges as a promising modality for the treatment of Grahani dosha with special reference to inflammatory bowel disease.

3.1. Overview of Piccha Basti and Therapeutic Uses

Table 1 explains Piccha Basti according to different Acharyas.

3.2. Method of Preparation

Piccha Basti, considered a type of Niruha Basti in Ayurveda, shares a similar preparation method. However, Acharya Charaka provides a distinct method in his Aritisara chikitsa adhaya (the chapter management on diarrhea), involving the utilization of Salmalita malbarica stems. These stems are encased in Kusha (~green grass), bundled, covered with black mud, and dried in the shade. Afterward, the dried bundle undergoes heating in cow dung fire until it reaches a shining red-hot state. Subsequently, it is cooled, broken, and triturated to extract the processed Salmali stem. This resultant paste is mixed with boiled milk, Ghrita, and a paste of Madhuka in appropriate proportions to form the Basti formulation.[6]

A different preparation method is outlined by Acharya Sushruta in Chikitsa sthan, which involves boiling Badar, Erawati, Shelu, Shalmati, and Dhanvanankura with milk, followed by straining and mixing with honey and blood from animals such as Varah, Mahish, Awarbhra, Krishna Murga, Aja, or Kukkuta. Other Ayurvedic scholars also adopt these methods for preparing the Basti.[7]

3.3. Properties of the Drugs Used in Piccha Basti

The drugs which are used as a substance of Piccha Basti by various Acharyas described in Table 2.

3.4. Gritha (Ghee)[21]

- Rasa: Madhura (sweet)
- Virya: Sheeteta (cold)
- Vipaka: Madhura (sweet)

Its properties are Agnideepana (~promotes digestive fire), Alpabhishyangi (~it causes very minimal or no obstruction to the channels), Chakshushya (~beneficial for vision), Medya (~increases memory power), Pittanilaharam (~pacificates vata and pitta), Kanthivardhaka (~increases brightness), Ojovardhakam (~increases immunity), Lavanya Vardhakam (~Increases lusture), Ayurvardakam (~increases life span), and Swarnmritihikaram (~promotes voice and power).

3.5. Dugdha (Milk)[23]

- Rasa: Madhura (sweet)
- Virya: Sheeteta (cold)
- Vipaka: Madhura (sweet)

Its properties are Vata Pitta haram (~pacifies vata and Pitta), Sram (~mobile in nature), Sadha Sukrakaram (~promotes semen instantaneously), Sheetalam (~cool in nature), Satmyam sarva Shareeraram (~suitable to all persons), Jeewaniyam (~life promoter), Brhimanam (~nutritious), Vajikaram (~aphrodisiac), Vaya Stapanam (~life stabilizer), Sandhikaram (~heals up fractures), Rasayam (~tissue vitalizer), and Doshha Dhatu Mala Srotasaam kinchit kledakaram (~it enhances mild moisture to Doshha, Dhatu, Mala, and Srotas).

3.6. Madhu (Honey)[24]

- Rasa: Madhura (sweet)
- Anurasata: Kashaya
- Virya: Sheeteta (cold)
- Vipaka: Madhura (sweet).

It has properties such as Grahi (~absorbent), Vilekanam (~depletory of body fats), Deepnam (~appetizer), and Vranashodanaparpanam (~clears and heals ulcers). It is helpful in treating skin diseases, cough, hemorrhoids, urinary tract disorders, worm infestations, diarrhea, and constipation. Its Yogavahi property helps in speeding up the Basti action.

The above all Dravya having mostly similar properties such as Madhur, Tikta, Kashay rasa, and Sheetavirya. This ingredients doing action on body such as Grahi (~absorbent), Snigdha (~unctuous), Dipana (~increase digestive power), Raktasodhana (~blood purifying), Sothagna (~anti-inflammatory), cure Shrama (tiredness), Trishna (~thirst), Daha (~burning), Picchila (~slimines), Dakaprasram (~decrease burning sensation), Stambhana (~to block), cure the disease of Raktapitta and Vatapitta.

3.7. Mode of action of Piccha Basti

In Figure 1, the mode of action of Piccha Basti is elucidated with a focus on the predominant utilization of Madhur, Tikta, and Kashay rasa Dravyas.

4. DISCUSSION

Basti, administered through the anus route, delivers medicinal liquid directly into the Pakwashaya (~colon). In classical texts, the Pakwashaya (~colon) is identified as the site primarily affected by Vatadosha.[25] Therefore, Basti primarily acts on Vatadosha, followed
by Pitta and Kapha Dosha, ultimately maintaining equilibrium among the three doshas. In addition, the Virya (~potency) of the Basti Dravya spreads throughout the body, enabling Basti to exhibit both local and systemic functions.

The constituents of Piccha Basti predominantly possess the tastes of Madhur (sweet), Tikta (bitter), and Kashayat (astringent), along with properties such as Picchil (~viscous), Sangrahi (~absorbent), Raktashodhaka (~hemostatic), Shonitashhapana (~blood-stauching), Vranaropana (~wound-healing), and Shothahara (~anti-inflammatory).

These medicinal qualities collectively facilitate faster healing of the gut. The Picchil (~viscous) property provides a protective layering of the damaged mucosal lining in the gut, safeguarding it from chemical irritants and gut secretions. It prevents friction and reduces intestinal irritation. Sangrahi (~absorbent) property, attributed to the Kashayrassa,[23] promotes water absorption in the large intestine, thus maintaining stool consistency and reducing the frequency of loose stools. The Raktashodhaka (~hemostatic) and Shonitashapan (~blood-stauching) properties, attributed to Tiktarasa and Sheetvitriya, respectively, pacify vitiated Raktadosha, thereby controlling bleeding from wounds. Vranaropaka karma, due to the Kashayrasa,[27] plays a role in ulcer healing and the regeneration of new, healthy cells. Kashaya rasa also imparts antibacterial properties and enhances local defense in the intestines. The Shothahara property can be likened to an anti-inflammatory effect, further aiding in the healing process.

As per Ayurvedic concept to correlate the modern concept, the Mocharas of Shalmali is recognized for its rich content of tannic and gallic acids, known for their astringent properties that facilitate the precipitation of proteins. This action is beneficial for the restoration of the damaged epithelial mucosal lining of ulcerated mucosa.[28] The methanol extract of Dalbergia sissoo stem bark (DSME) induces a significant increase in pH levels while concurrently reducing acid volume and acidity. This restoration of balance is highly favorable for exerting antiulcer effects. DSME potentially offers gastrointestinal protection through various mechanisms including scavenging of free radicals, restoration of enzymatic antioxidants, cryoprotection, and establishment of barriers against non-steroidal anti-inflammatory drugs.[29] Glycyrrhiza glabra exhibits significant antimicrobial activity, particularly against Escherichia coli bacteria, implicated in ulcerative colitis. This effect is attributed to the presence of secondary metabolites, including saponins, alkaloids, and flavonoids. Notably, compounds such as glabridin, glabrol, glabrene, hispaglabridin A, hispaglabridin B, 40-methylglabridin, and 3-hydroxyglabrol, isolated from G. glabra, contribute to this activity. The mechanism likely involves the downregulation of bacterial gene expression, inhibition of bacterial growth, and reduction of bacterial toxin production.[30] Nrf2, a key regulator, counteracts oxidative stress-induced cellular damage and inflammation by modulating anti-inflammatory cytokine production and inducing antioxidant enzymes. It plays a crucial role in preserving intestinal integrity in ulcerative colitis by translocating to the nucleus on oxidative stress exposure, thereby activating multiple antioxidant genes.[31] In Ficus bengalensis, various phytochemicals such as phenolic compounds and flavonoids are implicated in its antioxidant properties. Flavonoids additionally exhibit mast cell stabilizing effects. Terpenoids and flavonoids possess anti-inflammatory properties, likely contributing to F. bengalensis’ anti-inflammatory effects in inflammatory bowel disease.[32] The ethanol extract of Ficus racemosa has good anti-inflammatory activity demonstrated by inhibition of both cyclooxygenase-1 and 5-lipoxygenase enzymes, attributed to the presence of a novel glycoside compound called racemosic acid.[33] In Ficus religiosa, flavonoids exhibit anti-ulcerogenic activity and gastric protection activity.[34] Mimosa pudica displays antimicrobial activity against E. coli associated with ulcerative colitis.[35] The crude hydro-alcoholic extract of Holarrhena antidysenterica exhibits dual gut stimulant and relaxant properties, likely mediated by histamine receptor activation and calcium channel blockade, respectively. Holarrhena antidysenterica inhibits stable toxin production and intestinal secretions, reducing the virulence of enterotoxigenic E. coli strains, thus providing protection against various stages of diarrhea.[36] The chloroform extract of Cyperus rotundus demonstrates direct inhibition of gene expression for proinflammatory cytokines including IL-4, IL-6, IL-12, and IFN-γ in colon tissue. The potential mechanism underlying its ameliorating effect is likely attributed to active principles such as natural steroids and terpenoids, either individually or synergistically, exerting antioxidant and anti-inflammatory effects by downregulating proinflammatory cytokines.[37] Cordia dichotoma exhibits gastroprotective and antiulcer effects, along with anti-inflammatory activity.[38]

5. CONCLUSION

After evaluating the actions of all its components, it has been determined that Piccha Basti exhibits potential in modulating gut microbiota composition, thereby promoting a balanced microbial ecosystem crucial for gastrointestinal health. Through this modulation, Piccha Basti may mitigate dysbiosis commonly associated with IBS, thereby aiding in the restoration of intestinal homeostasis. The synergistic combination of ingredients in Piccha Basti highlights its efficacy in managing conditions such as Jirna Atisara (~chronic diarrhea), Pravahika (~dysentery), and Grahani Dosha (~IBS), as endorsed by Ayurvedic Acharyas.

6. ACKNOWLEDGMENTS

None.

7. AUTHORS’ CONTRIBUTIONS

All the authors contributed equally in the design and execution of the article.

8. FUNDING

Nil.

9. ETHICAL APPROVALS

This study is not required ethical clearance as it is a review study.

10. CONFLICTS OF INTEREST

Nil.

11. DATA AVAILABILITY

This is an original manuscript and all data are available for only review purposes from principal investigators.

12. PUBLISHERS NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.
REFERENCES

How to cite this article: Chaudhary B, Singh SK, Rajorja K, Bishnoi V. Critical Insights into the Therapeutic Potential of Picchha Basti – A Review. IRJAY. [online] 2024;7(5):41-47. Available from: https://irjay.com DOI link- https://doi.org/10.48165/IRJAY.2024.70509
Table 1: Piccha Basti according to different Acharyas.

<table>
<thead>
<tr>
<th>Reference book</th>
<th>Drug used</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cha. Chi. 19/64-68[6]</td>
<td>Shalmalivrint, Yashthimadhu, Ksheer (milk), Ghrita (clarified butter), and Taila (oil), Madhu</td>
<td>Paitika type of diarrhea, fever, edema, gulma (~abdominal lumps), chronic diarrhea, grahuni (~digestive disorders), and the acute complications of purgation as well as of Asthapana Basti.</td>
</tr>
<tr>
<td>As. Hri. Chi. 9/73-76[8]</td>
<td></td>
<td>It cures dysentery, prolapsed of rectum, bleeding, and fever.</td>
</tr>
<tr>
<td>As. Hri. Chi. 9/95[9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As. San. Chi. 11/2[10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As. San. Chi. 10/4[12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As. Hri. Chi. 8/125-128[13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Su. Chi. 38/85-86[14]</td>
<td>Badar, Nagbala, Shelu, Shalmali, and Dhanvanakur cooked with Ksheer and Madhu, supplemented with blood from various animals such as varah, mahish, aurabha, baidal, aeney, kaukkutam, and aja.</td>
<td>Obstruction due to Vata & Kapha, Secretion of Kapha in Atisara (diarrhea), Pain in Pravahika (~Dysentery) Picchastrav (~Oily secretion), Gudabhransha (~prolapsed rectum), pain due to Pravahaam (~Dysentery), Kshatkshina</td>
</tr>
<tr>
<td>Chakradatta/Niruhadhikar/32-34[15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As. Hri. Chi. 9/118-119[16]</td>
<td>Vach, Bilva, Pippli, Kushtha, Satahya Saindhav add in piccha basti</td>
<td></td>
</tr>
<tr>
<td>As. Hri. Chi. 9/96-98[17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yogratnakar/Atisarchikitsa/84-85[18]</td>
<td>Leaves of Shimshapa and Kovidar and yava are boiled in water and add Ghrit, Ksheera.</td>
<td></td>
</tr>
<tr>
<td>Sha. Uttarakhand. 6/23–24[19]</td>
<td>Badar, Nagbala, Shelu, Shalmali, and Dhanwna, Musta cooked with Ksheer and Madhu, supplemented with blood from various animals such as Aja, Aurabha, and eney. Dose - 12 pala</td>
<td>Mild or massive bleeding from anus with pain, Vayu Vibanda (~obstruction of vayu) Pravahika, (~IBS) Mootra-Parisksange (~obstruction of urine & stool)</td>
</tr>
<tr>
<td>Yogratnakar/Atisarchikitsa/80–83[20]</td>
<td>Shalmalipushpa, Ksheer, Ghrit, Taila, Yashthimadhu, Madhu</td>
<td></td>
</tr>
<tr>
<td>Bhavaprakasa/Purvakhanda/Panchakarmavidhiprakarna - 5/159,160[21]</td>
<td>Badar, eravati, Shelu, Shalmalpushpa, Ankur boiled with Ksheer, add Madhu, the blood of Aja, Urbhra, Enah Dose – 12Pala</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Various drugs are used by various acharyas in *Piccha Basti*.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Botanical name</th>
<th>Family</th>
<th>Rasa</th>
<th>Guna</th>
<th>Virya</th>
<th>Vipaka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shalmali vrint</td>
<td>Salmalia malabarica</td>
<td>Bombacaceae</td>
<td>Madhura, Kashaya</td>
<td>Laghu, snigdha, picchil</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Shalmali niryasa</td>
<td>Salmalia malabarica</td>
<td>Bombacaceae</td>
<td>Kashaya</td>
<td>Laghu, snigdha, picchil</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Yashtimadhu</td>
<td>Glycyrrhiza glabra</td>
<td>Leguminaceae</td>
<td>Madhura</td>
<td>Guru, snigdha</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Yavasa</td>
<td>Alhagi Camelorum</td>
<td>Leguminaceae</td>
<td>Madhura, Tikta, Kashaya</td>
<td>Laghu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasamool</td>
<td>Saccharum spontaneum</td>
<td>Poaceae</td>
<td>Madhura, kashaya</td>
<td>-</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Kashamool</td>
<td>Desmostachya bipinnata</td>
<td>Poaceae</td>
<td>Madhura, kashaya</td>
<td>Snigdha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shalmali pushpa</td>
<td>Salmalia malabarica</td>
<td>Bombacaceae</td>
<td>Madhura, kashayaaa</td>
<td>Laghu, snigdha, picchil</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Nyagrodha</td>
<td>Ficus benghalensis</td>
<td>Moraceae</td>
<td>Kashaya</td>
<td>Guru, Raksha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udumbar</td>
<td>Ficus racemosa</td>
<td>Moraceae</td>
<td>Kashaya</td>
<td>Guru, Raksha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashwatha shrung</td>
<td>Ficus religiosa</td>
<td>Moraceae</td>
<td>Kashaya</td>
<td>Guru, Raksha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smanga</td>
<td>Mimosa pudica</td>
<td>Leguminosae</td>
<td>Kashya, Tikta</td>
<td>Laghu, Raksha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandan</td>
<td>Santalum album</td>
<td>Santalaceae</td>
<td>Tikta, Madhura</td>
<td>Laghu, Raksha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utpal</td>
<td>Nymphaea rubra</td>
<td>Nymphaeaceae</td>
<td>Madhura, Kashaya, Tikta</td>
<td>Laghu, Snigdha, Picchila</td>
<td>Sheeta</td>
<td>Katu</td>
</tr>
<tr>
<td>Vatsaka beej</td>
<td>Holarrhena antidysenterica</td>
<td>Apocynaceae</td>
<td>Tikta, Kashaya</td>
<td>Laghu, Raksha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priyanga</td>
<td>Callicarpa Macrophylla</td>
<td>Verbenaceae</td>
<td>Tikta, Kashaya, Madhura</td>
<td>Laghu, Raksha</td>
<td>Sheeta</td>
<td>-</td>
</tr>
<tr>
<td>Padmakeshar</td>
<td>Prunus Puddum</td>
<td>Rosaceae</td>
<td>Kashya, Tikta</td>
<td>Laghu, Snigdha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badar</td>
<td>Ziziphus sativa</td>
<td>Rhamnaceae</td>
<td>Madhura</td>
<td>Snigdha, Guru</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagbala</td>
<td>Sida veronicaefolia</td>
<td>Malvaceae</td>
<td>Madhura amla, kashaya</td>
<td>Guru</td>
<td>Ushna</td>
<td>-</td>
</tr>
<tr>
<td>Shelu</td>
<td>Cordia dichotoma</td>
<td>Boraginaceae</td>
<td>Kashaya, Tikta-Bark Madhura - fruit</td>
<td>Guru, Snigdha</td>
<td>Sheeta</td>
<td>Katu</td>
</tr>
<tr>
<td>Dhanvanakur</td>
<td>Grewia tilaefolia</td>
<td>Tiliaceae</td>
<td>Madhura, Kashaya</td>
<td>Laghu, Raksha</td>
<td>Madhura</td>
<td>Ushna</td>
</tr>
<tr>
<td>Shimshapa</td>
<td>Dalbergia sissoo</td>
<td>Fabaceae</td>
<td>Kashaya, Katu, Tikta</td>
<td>Laghu, Raksha</td>
<td>Ushna</td>
<td>Katu</td>
</tr>
<tr>
<td>Kovidar</td>
<td>Bauhinia variegata</td>
<td>Caesalpiniaceae</td>
<td>Kashaya</td>
<td>Laghu, Raksha</td>
<td>Sheeta</td>
<td>Katu</td>
</tr>
<tr>
<td>Musta</td>
<td>Cyperus rotundus L.</td>
<td>Cyperaceae</td>
<td>Tikta, Katu, Kashaya</td>
<td>Laghu, Raksha</td>
<td>Sheeta</td>
<td>Katu</td>
</tr>
<tr>
<td>Gritha</td>
<td>-</td>
<td></td>
<td>Madhura</td>
<td>Snigdha</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Dogatha</td>
<td>-</td>
<td></td>
<td>Madhura</td>
<td>Snigdha</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
<tr>
<td>Honey</td>
<td>-</td>
<td></td>
<td>Madhura, Kashaya</td>
<td>Raksha</td>
<td>Sheeta</td>
<td>Madhura</td>
</tr>
</tbody>
</table>
3.4 Mode of action of Piccha basti:

Figure 1: Mode of action of Piccha basti